a^2+a^2=35^2

Simple and best practice solution for a^2+a^2=35^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+a^2=35^2 equation:



a^2+a^2=35^2
We move all terms to the left:
a^2+a^2-(35^2)=0
We add all the numbers together, and all the variables
2a^2-1225=0
a = 2; b = 0; c = -1225;
Δ = b2-4ac
Δ = 02-4·2·(-1225)
Δ = 9800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9800}=\sqrt{4900*2}=\sqrt{4900}*\sqrt{2}=70\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-70\sqrt{2}}{2*2}=\frac{0-70\sqrt{2}}{4} =-\frac{70\sqrt{2}}{4} =-\frac{35\sqrt{2}}{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+70\sqrt{2}}{2*2}=\frac{0+70\sqrt{2}}{4} =\frac{70\sqrt{2}}{4} =\frac{35\sqrt{2}}{2} $

See similar equations:

| x-0.3=0.4 | | -2(a-5)+3=a-11 | | n/2+9=15 | | V-5=-10-5v+v | | 15-4x=2x-15 | | (r-4)9=64 | | 1/2(6x+3)-8x-(3x-9)=13/2 | | k2-k-42=0 | | 43-4x=3x-13 | | m-5=56 | | 3x=6/3=0 | | 8j-2=12 | | 10x-8=2(x-4) | | 28-(3x+4)=2x(x+6)+1x | | -14p+15=-11p–15 | | 4x-8+19=8x-14 | | 3y+5=6y-12 | | X+2x(x-8)=180 | | 150-x=30 | | 2.5(4x−6)−5=10 | | n-25=-14 | | 6x(2x^2-1)=0 | | x.x2=729 | | 88.1-2.4f=72.46 | | 6-1/2p=1/4p | | -3x18=3(3x+2) | | 5x2+10x−7=0 | | 2/x+3=5/24x+13/4 | | 12x*x*x=6x | | (3x+2)/x=5 | | −3n−2n+9=29 | | −3n−2n+9=29−3n−2n+9=29 |

Equations solver categories